298 research outputs found

    Resistive anode image converter

    Get PDF
    The invention of an apparatus for imaging soft X-ray and ultraviolet electromagnetic radiation and charged particles was described. The apparatus includes a pair of microchannel electron multiplier plates connected in a cascaded chevron configuration which intercepts an incident beam of radiation or charged particles. Incident photons or charged particles strike the front surface of the chevron configuration causing emission of electrons. The electrons are accelerated by a voltage gradient and strike the inner side walls of the individual channels, causing emission of secondary electrons. Accelerated and multiplied secondary electrons impinge upon a resistive anode after they transverse the chevron configuration. A pulse position circuit converts the magnitude or transit time of the currents flowing from the point of impact of the electrons on the resistive anode to four contact electrodes mounted on their periphery of the resistive anode into the spatial coordinates of electron impact

    On the accuracy of the S/N estimates obtained with the exposure time calculator of the Wide Field Planetary Camera 2 on board the Hubble Space Telescope

    Get PDF
    We have studied the accuracy and reliability of the exposure time calculator (ETC) of the Wide Field Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope (HST) with the objective of determining how well it represents actual observations and, therefore, how much confidence can be invested in it and in similar software tools. We have found, for example, that the ETC gives, in certain circumstances, very optimistic values for the signal-to-noise ratio (SNR) of point sources. These values overestimate by up to a factor of 2 the HST performance when simulations are needed to plan deep imaging observations, thus bearing serious implications on observing time allocation. For this particular case, we calculate the corrective factors to compute the appropriate SNR and detection limits and we show how these corrections vary with field crowding and sky background. We also compare the ETC of the WFPC2 with a more general ETC tool, which takes into account the real effects of pixel size and charge diffusion. Our analysis indicates that similar problems may afflict other ETCs in general showing the limits to which they are bound and the caution with which their results must be taken.Comment: 14 pages, 13 figures, to be published in PASP on July 200

    Arthroscopic synovectomy in chronic inflammatory rheumatism: clinical and functional aspects

    Get PDF
    By now many authors regard arthroscopic synovectomy an integral part of therapeutic treatment of many rheumatic diseases with favourable results on post operating course and clinical picture in the long term. The pathologic synovial tissue during articular inflammatory rheumatism is well known to have a damaging effect responsible of early cartilage injury, as well as symptomatic action (e.g. articular stiffness, effusion, pain, functional limitation). Therefore to value the removal of such a tissue you should think of the secondary prevention of cartilage injury, besides the symptomatic point of view. Since 1996 we performed 190 arthroscopic synovectomy, the adopted criteria of judgement were: pain (spontaneous, during active and passive movements), effusion or swelling presence, articular range and cartilage state (evaluated during arthroscopy according to Outerbridg's classification). 70% of the cases showed good results and six years later the beginning of this activity we retain arthroscopic synovectomy as a valid help in articular inflammatory rheumatism treatment

    Spectra and Diagnostics for the Direct Detection of Wide-Separation Extrasolar Giant Planets

    Full text link
    We calculate as a function of orbital distance, mass, and age the theoretical spectra and orbit-averaged planet/star flux ratios for representative wide-separation extrasolar giant planets (EGPs) in the optical, near-infrared, and mid-infrared. Stellar irradiation of the planet's atmosphere and the effects of water and ammonia clouds are incorporated and handled in a consistent fashion. We include predictions for 12 specific known EGPs. In the process, we derive physical diagnostics that can inform the direct EGP detection and remote sensing programs now being planned or proposed. Furthermore, we calculate the effects of irradiation on the spectra of a representative companion brown dwarf as a function of orbital distance.Comment: submitted to the Astrophysical Journal, 19 pages, 11 color figure

    HST observations of the metal rich globular clusters NGC6496 and NGC6352

    Full text link
    Deep exposures of the metal-rich globular clusters NGC6496 and NGC6352 were obtained with the WFPC2 camera on board the HST through the F606W and F814W filters. The resulting colour-magnitude diagrams reach down to absolute magnitude M_814~10-10.5, approximately 5 magnitudes below the main sequence (MS) turn-off. The MS of the two clusters are sharp and well defined and their fiducial lines overlap almost exactly throughout this range. Their colour is, however, more than 0.1 mag redder than the MS fiducial line of the prototype metal-rich globular cluster 47 Tuc, after proper correction for the relative distances and reddening. This provides solid empirical evidence of a higher metal content, which is not surprising if these objects belong indeed to the bulge as their present location suggests. A good fit to the upper part of the MS of both clusters is obtained with a 10 Gyr-old theoretical isochrone from Baraffe et al. (1998) for a metallicity of [M/H]=-0.5, but at lower luminosity all models depart considerably from the observations, probably because of a deficiency in the treatment of the TiO opacity. The luminosity functions obtained from the observed CMD are rather similar to one another and show a peak at M_814~9. The present day mass functions (PDMF) are derived down to m~0.2 Msolar and are consistent with power-law indices alpha=0.7 for NGC6496 and alpha=0.6 for NGC6352. The PDMF of 47 Tuc is twice as steep in the same mass range (alpha=1.4). We investigate the origin of this discrepancy and show that it can be understood if the two clusters contain a considerably higher fraction of primordial binaries amongst their MS population, similar to that expected in the bulge. We briefly discuss the implications of this finding on the process of star and binary formation and on the universality of the IMF.Comment: Accepted for publication in Astronomy and Astrophysics. Prepared with aatex, 12 pages, 7 figure

    Why is the mass function of NGC 6218 flat?

    Full text link
    We have used the FORS-1 camera on the VLT to study the main sequence (MS) of the globular cluster NGC 6218 in the V and R bands. The observations cover an area of 3.4 x 3.4 around the cluster centre and probe the stellar population out to the cluster's half-mass radius (r_h ~ 2.2). The colour-magnitude diagram (CMD) that we derive in this way reveals a narrow and well defined MS extending down to the 5 sigma detection limit at V~25, or about 6 magnitudes below the turn-off, corresponding to stars of ~ 0.25 Msolar. The luminosity function (LF) obtained with these data shows a marked radial gradient, in that the ratio of lower- and higher-mass stars increases monotonically with radius. The mass function (MF) measured at the half-mass radius, and as such representative of the clusters global properties, is surprisingly flat. Over the range 0.4 - 0.8 Msolar, the number of stars per unit mass follows a power-law distribution of the type dN/dm \propto m^{0}, where, for comparison, Salpeter's IMF would be dN/dm \propto m^{-2.35}. We expect that such a flat MF does not represent the cluster's IMF but is the result of severe tidal stripping of the stars from the cluster due to its interaction with the Galaxy's gravitational field. Our results cannot be reconciled with the predictions of recent theoretical models that imply a relatively insignificant loss of stars from NGC 6218 as measured by its expected very long time to disruption. They are more consistent with the orbital parameters based on the Hipparcos reference system that imply a much higher degree of interaction of this cluster with the Galaxy than assumed by those models. Our results indicate that, if the orbit of a cluster is known, the slope of its MF could be useful in discriminating between the various models of the Galactic potential.Comment: 11 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Toward a unified light curve model for multi-wavelength observations of V1974 Cygni (Nova Cygni 1992)

    Full text link
    We present a unified model for optical, ultraviolet (UV), and X-ray light curves of V1974 Cygni (Nova Cygni 1992). Based on an optically thick wind model of nova outbursts, we have calculated light curves and searched for the best fit model that is consistent with optical, UV, and X-ray observations. Our best fit model is a white dwarf (WD) of mass 1.05 M_\sun with a chemical composition of X=0.46, C+N+O=0.15, and Ne = 0.05 by mass weight. Both supersoft X-ray and continuum UV 1455 \AA light curves are well reproduced. Supersoft X-rays emerged on day ~ 250 after outburst, which is naturally explained by our model: our optically thick winds cease on day 245 and supersoft X-rays emerge from self-absorption by the winds. The X-ray flux keeps a constant peak value for ~ 300 days followed by a quick decay on day ~ 600. The duration of X-ray flat peak is well reproduced by a steady hydrogen shell burning on the WD. Optical light curve is also explained by the same model if we introduce free-free emission from optically thin ejecta. A t^{-1.5} slope of the observed optical and infrared fluxes is very close to the slope of our modeled free-free light curve during the optically thick wind phase. Once the wind stops, optical and infrared fluxes should follow a t^{-3} slope, derived from a constant mass of expanding ejecta. An abrupt transition from a t^{-1.5} slope to a t^{-3} slope at day ~ 200 is naturally explained by the change from the wind phase to the post-wind phase on day ~ 200. The development of hard X-ray flux is also reasonably understood as shock-origin between the wind and the companion star. The distance to V1974 Cyg is estimated to be ~ 1.7 kpc with E(B-V)= 0.32 from the light curve fitting for the continuum UV 1455 \AA.Comment: 8 pages, 4 figures, to appear in the Astrophysical Journa

    Hydrodynamical simulations of the jet in the symbiotic star MWC 560 III. Application to X-ray jets in symbiotic stars

    Full text link
    In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since the pulsed emission of the jet creates internal shocks and since the jet velocity is very high, the jet bow shock and the internal shocks are heated to high temperatures and should therefore emit X-ray radiation. In this paper, we investigate in detail the X-ray properties of the jets in our models. We have focused our study on the total X-ray luminosity and its temporal variability, the resulting spectra and the spatial distribution of the emission. Temperature and density maps from our hydrodynamical simulations with radiative cooling presented in the second paper are used together with emissivities calculated with the atomic database ATOMDB. The jets in our models show extended and variable X-ray emission which can be characterized as a sum of hot and warm components with temperatures that are consistent with observations of CH Cyg and R Aqr. The X-ray spectra of our model jets show emission line features which correspond to observed features in the spectra of CH Cyg. The innermost parts of our pulsed jets show iron line emission in the 6.4 - 6.7 keV range which may explain such emission from the central source in R Aqr. We conclude that MWC 560 should be detectable with Chandra or XMM-Newton, and such X-ray observations will provide crucial for understanding jets in symbiotic stars.Comment: 10 pages, 12 figures, accepted for publication in ApJ, uses emulateap

    Arthroscopic synovectomy in chronic inflammatory rheumatism: clinical and functional aspects

    Get PDF
    By now many authors regard arthroscopic synovectomy an integral part of therapeutic treatment of many rheumatic diseases with favourable results on post operating course and clinical picture in the long term. The pathologic synovial tissue during articular inflammatory rheumatism is well known to have a damaging effect responsible of early cartilage injury, as well as symptomatic action (e.g. articular stiffness, effusion, pain, functional limitation). Therefore to value the removal of such a tissue you should think of the secondary prevention of cartilage injury, besides the symptomatic point of view. Since 1996 we performed 190 arthroscopic synovectomy, the adopted criteria of judgement were: pain (spontaneous, during active and passive movements), effusion or swelling presence, articular range and cartilage state (evaluated during arthroscopy according to Outerbridg’s classification). 70% of the cases showed good results and six years later the beginning of this activity we retain arthroscopic synovectomy as a valid help in articular inflammatory rheumatism treatment
    • …
    corecore